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Abstract

The aim of this dissertation is "to evaluate the effectiveness of different methods to deal with
backpressure in an osmotic computing pipeline”. Osmotic computing “enables the automatic
deployment of microservices that are composed and interconnected over both edge and
cloud infrastructures”(Villari et al., 2016). In this project an IoT-Edge-Cloud pipeline is
created by using the Urban Observatory API, my PC, three Raspberry Pis and an AWS EC2
instance. One of the Raspberry Pis to balance the data to the other two where it is
processed and then sent to the cloud. Experiments are performed to compare the least
connections, round robin, and weighted round robin load balancing algorithms. The
hypothesis is that the least connection algorithm will be the most efficient algorithm. Metrics
are compared such as the time taken from when the data was sent from the load balancer
until it was received in the cloud, and Grafana graphs showing data such as CPU usage to
compare the different experiments. Upon evaluation, the hypothesis is disproven and the
least connections algorithm only generally performed better in pipelines where different CPU
constraints were applied to containers and the respective weights were not applied to in the
weighted round-robin algorithm to compensate for this. It can be concluded that although the
least connections algorithm did not always perform the best, it is the best algorithm to deploy
easily if the programmer does not know the processing power of the different edge devices.
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1 Introduction

1.1 The context

Osmotic computing “enables the automatic deployment of microservices that are composed
and interconnected over both edge and cloud infrastructures” (Villari et al., 2016).
The Internet of Things is an ever growing field that is used in many different types of
industries, such as healthcare and finance, where basic calculations on the data need to be
processed in real time (and the latency caused by sending the data to the cloud, would be
impractical), but often complex, resource intensive algorithms also need to be performed on
large volumes of data, which often cannot feasibly be done through edge computing due to
resource limitations. I believe that osmotic computing is the way forward to processing data
more efficiently, instead of using just an edge computing or a cloud centric Internet of Things
programming model, as this reaps the benefits of both models.

1.2 The problem

Backpressure is the CPU load or queue length, and can be defined as “Resistance or force
opposing the desired flow of data through software” (Phelps, 2019).
Osmotic data flow can be affected by three main conditions, which can cause backpressure:
limited downstream bandwidth between Layers (which can be due to a change in the
network or poor network conditions), edge device stability (which can be caused by a
hardware fault or load saturation), changes in IoT Devices Publishing to Edge Layer (which
can be caused change in the number of IoT devices or a change in the frequency).

I would like to investigate how to implement measures to mitigate the effect that
back-pressure has on the system, therefore making an osmotic computing pipeline more
efficient and able to cope with large volumes of data. This is something which is essential if
osmotic computing becomes the main paradigm used in an Internet of Things and cloud
computing workflow.

1.3 The rationale

For this project, I will emulate an osmotic computing pipeline by using the urban observatory
API as my Internet of Things layer from which I will read air pollution data, three Raspberry
Pi’s will be used as my edge devices and AWS will be used for the cloud data centre. I will
then implement different load balancing algorithms into the edge layer and compare how
effective each of these algorithms are when the edge layer is overloaded with data and
therefore subjected to back-pressure. I will use one of my Raspberry Pi’s for load balancing
and the other two for processing the data. I will first save the data from the Urban
Observatory API to a CSV file inside a linux virtual machine running on a windows computer.
I will then send this data from the virtual machine to the first Raspberry Pi via the MQTT
protocol which uses a publish and subscribe model. The subscribe code runs on the
Raspberry Pi and the publish data runs on the virtual machine. Both the subscribe code and
publish code have been written in Python. When the air pollution data is received on the
Raspberry Pi, this sends this data to the other two Raspberry Pi’s for processing before
being sent to the cloud, for storage in an SQL database.
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I will store up a backlog of data from the Urban Observatory API in a CSV file on a virtual
machine so there is enough data to cause a build up of back-pressure when this is sent to
the first Raspberry Pi. The first Raspberry Pi then has to use load balancing algorithms to
forward the data to the other two Raspberry Pis. On the Raspberry Pi’s I will perform some
simple calculations on the data, which will be calculating the mean average of the data and
the range of the data. The three load balancing algorithms I will investigate the effectiveness
of are least connections, round-robin and weighted round robin. I will mainly be investigating
the effect of using different load balancing algorithms to distribute the data for processing
between the other two Raspberry Pi’s from the load balancer.

1.4 Aim and Objectives

Aim: To evaluate the effectiveness of different methods to deal with backpressure in an
osmotic computing pipeline.

Objectives

1. To use the Urban Observatory API (IoT layer), with the Raspberry Pis acting as an edge
device and using AWS for the cloud to emulate the data flow of an osmotic computing
pipeline.
Explanation: This is necessary so that I can implement load balancing into the edge layer in
order to evaluate the effectiveness of different methods and algorithms.
2. To investigate and evaluate the different algorithms that can be used for load balancing.
Explanation: An efficient load balancing algorithm should mitigate the effect that back
pressure has on a system. This therefore is worthwhile researching as it will assist me in my
aim of minimising back pressure in an osmotic computing pipeline.
3. To implement an efficient load balancing algorithm into the edge layer of an osmotic
computing pipeline.
Explanation: I can compare how implementing different algorithms, such as round robin or
least connections affect how well the edge layer copes with a high volume of data.

1.5 Changes Since the Initial Proposal

Since the proposal was submitted, the hypothesis has been formed. The hypothesis is that
the least connections algorithm will be the most efficient load balancing algorithm when
compared with round robin and weighted round robin. This provides a direct focus point
which is discussed and evaluated in the results and evaluation section of this document.
Furthermore, in the initial proposal there were 5 listed objectives, the last two objectives
which have been omitted are listed below:

4. To Investigate, evaluate and compare means of adaptive data flow control.
Explanation: If the CPU load (backpressure) is too high then an algorithm such as the token
bucket algorithm, or leaky bucket algorithm can be used in the edge gatekeeper to limit the
forwarding rate. This will allow the edge device to be able to work through processing the
backlog of data that has built up while minimising the chances of the edge device crashing.
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5. To implement adaptive data flow control into an osmotic computing pipeline which is
effective at minimising back-pressure.
Explanation: I will be able to evaluate how effective different methods of adaptive data flow
control are at coping with high volumes of data and explore the benefits and drawbacks of
these methods.

The decision to omit these objectives from the dissertation was taken because, as the
project developed, it was decided that the main focus of the dissertation would only be on
analysing and comparing load balancing algorithms. Experiments are performed to form
conclusions as to which algorithm processes the data most effectively when subjected to
different scenarios, such as varying docker CPU constraints, and therefore which algorithm
is the most effective at mitigating the impact of back-pressure in different system
configurations. By omitting objectives 4 and 5, more experiments can be performed and
more data can be collected in the hope of being able to form more conclusive evaluation and
comparison between these algorithms. These experiments are also used to evaluate the
validity of the hypothesis.
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2 Background Review

Here I will talk about the scientific papers I have read and their relevance to the dissertation.
The first paper I read was “Osmotic Computing a New Paradigm for Edge/Cloud Integration”.
I found this paper very useful as it gave me an overview of what osmotic computing is and
helped me to decide that this is something I want to investigate because it is my belief that
the osmotic computing model could be the future of IoT and cloud computing. This is
because the osmotic computing model can “decompose applications into microservices and
perform dynamic tailoring of microservices in smart environments exploiting resources in
edge and cloud infrastructures” (Villari et al., 2016). This means that with the osmotic
computing model we are able to reap the benefits of both the edge computing model and the
cloud computing model.

The second paper I read was “Osmotic Flow: Osmotic Computing + IoT Workflow”(Nardelli
et al., 2017). I found that this paper provides a good amount of detail on the actual
components in an osmotic flow model (such as a data source, sink, transformation function,
contract, osmotic resource manager, universal stream repository, node manager, and
worker). This paper provides a more in-depth understanding of how the osmotic flow model
is actually constructed and therefore will help me to achieve objective 1.

I also read a scientific paper titled “Performance Analysis of Load Balancing Algorithms”
(Sharma, Singh and Sharma, 2008). This paper helps with objectives 2, and 3 as it gives
examples of both static algorithms such as round robin or the central manager algorithm and
dynamic load balancing algorithms such as the central queue algorithm or local queue
algorithm and explains how these algorithms operate. The round robin algorithm explained in
this paper has been incorporated into the project implementation of this project. This paper
also gives insight into how the effectiveness of different load balancing algorithms can be
compared. In this paper the parameters they used to evaluate the performance of the
different load balancing algorithms are: overload rejection, fault tolerant, forecasting
accuracy, stability, if they are centralised or decentralised, nature of load balancing
algorithms, cooperative, process migration, and resource utilisation. This is an aspect that
has been considered for the implementation in the project for this dissertation, as docker
container metrics, and time metrics such as the average time taken from when a packet is
sent from the load balancer and received in the cloud. The paper has also provided a useful
definition of load balancing as “the process of improving the performance of a parallel and
distributed system through a redistribution of load among the processors”.

Another paper I read was “Osmotic Message-Oriented Middleware for the Internet of
Things”(Rausch, Dustdar and Ranjan, 2018). This paper explains what message-oriented
middleware is and why it is important and is used in osmotic computing. This highlights the
role that message oriented middleware has in osmotic computing and how it could be used
in my project. After some further research, I decided the best way to send data from the
virtual machine on my pc to the load balancer Raspberry Pi and from this Raspberry Pi to
the other Raspberry Pis was using the Eclipse Mosquitto open source message broker that
implements the MQTT protocol (which is a MoM protocol). The MQTT protocol has been
used because MQTT works using the publish and subscribe model which makes it very easy
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to send the data from one device to another (the sending device publishes the data,
assigned to a topic, and the receiving device simply has to subscribe to this topic on the
relevant port and ip address). Mosquitto is the most popular MQTT broker, and is well
documented, hence why I chose to use this.

The final paper I read was “Modeling and Emulation of an Osmotic Computing Ecosystem
using OsmoticToolkit”(Buzachis et al., 2021). This paper explains how to emulate an entire
osmotic computing ecosystem. Therefore, I feel that this paper provides sufficient
information in regards to how I will create the osmotic computing pipeline (objective 1).
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3 Implementation

This implementation section explains what was done and how.

Figure 1: Diagram to show the flow of data using the publish and subscribe model

3.1 Overview of the architecture of the project

Throughout this document, the three Raspberry Pis have been referred to as Raspberry Pi
one, Raspberry Pi two, and Raspberry Pi three respectively. Raspberry Pi one is used as a
load balancer so is also interchangeably referred to as this. Raspberry Pi two and three are
used to perform basic calculations on the data packets they have been sent.
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Figure 1 illustrates how data packets are sent through the system across the system using
the MQTT protocol. The diagram has been colour coded according to topics so that an arrow
that is publishing to a topic and an arrow that is subscribing to the same topic are of the
same colour.

The MQTT protocol has been implemented using the Mosquitto MQTT broker, to send the
data packets from the virtual machine to the load balancer, and then from here to the other
two Raspberry Pis and from them to the cloud. There is some Python code on the virtual
machine called “publish.py”, which reads data from a CSV file and line by line this data is
sent across to the mosquitto broker via MQTT. The data was published under the topic of
“file_subscribe” so that this data could easily be subscribed to under the same topic name
inside some python code on Raspberry Pi one. At first the code just printed each line of the
CSV file that was received. The data was sent from publish.py using a sleep timer of 1
second between sending each message initially. This was done to make it very easy to
check that the correct data was being sent across and that the application was functioning
as intended. Using the sleep timer allowed the functionality of the round robin, and weighted
round robin load balancing algorithms to be easily tested visually by observing if the
payloads are sent to the Raspberry Pis in the intended order and ratios.
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3.2 Hardware, Technologies and Software Used In the Project

For this project all of the code was run inside linux (either on a Raspberry Pi or on a virtual
machine) because linux is the preferred platform for using the Mosquitto MQTT broker. This
made the system easier to implement and less error prone.

After the initial configuration, all of the project's development was done using one windows
computer. This was made possible by connecting Putty with the three Raspberry Pis via
SSH, so that the terminal of the Raspberry Pis could be remotely accessed. SSH was used
to interact with the three Raspberry Pis because this was much more practical than plugging
the keyboard, mouse and hdmi cable out of one Raspberry Pi and into another every single
time some code needed to be edited or run. Using SSH made it a lot more practical to copy
code from the VSCode to the Raspberry Pi this way. Initially VNC (which also uses SSH)
was also used to interact with the GUI on the Raspberry Pis as well, but after using this for a
while it became apparent that using the GUI was unnecessary as everything could be done
faster via the command line interface.

When developing the code and Dockerfiles to go onto the Raspberry Pis, VSCode was used
to first write out all of the code and then it was simply copied across to the Raspberry Pis by
copying all the code and then pasting the contents into a file by using the nano command to
edit the text within a file on the Raspberry Pi. VSCode was chosen for the development
because it is a very light code editor in comparison to more traditional Integrated
Development Environments that are used for python (such as PyCharm). With VSCode the
user can simply install extensions and then code in most programming languages inside the
VSCode editor. This would be of benefit if the project was taken further and another
language was used, as the development could still be done using the same code editor.

To run the virtual machine a piece of software known as Virtual Box was used. VirtualBox
was used because it is open source and free and recognised as one of the best virtualisation
software tools available at the current time of writing. The Ubuntu distribution of linux was
used on the virtual machine. The exact version of Ubuntu used was 20.04.4 LTS. There are
several different distributions of linux available due to the nature of it being open source,
however in this project Ubuntu was used because this is the most commonly used and most
supported linux distribution there is and is the de facto standard distribution of linux most
people will use unless they have a specific reason otherwise. This also means there is the
most support for Ubuntu online when compared to other distributions so it should be easier
to get help if any issues are encountered.

In this project the paho-mqtt client library was used to enable an easy way to publish and
subscribe to MQTT broker in Python. MQTT implements three different Quality of Service
constraints: QoS 0, QoS 1, QoS . In this project a Quality of Service value of 0 was used as
the default as this means data can be sent and received faster, although receipt of the data
is not guaranteed, as there is no handshake involved. In some systems a QoS 1 may be
required (the data is received at least once), or QoS 2 (the data is always received exactly
once).
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This project was implemented using the mosquitto MQTT broker to communicate between
all devices within the architecture of the project. MQTT is most commonly built on top of the
TCP/IP stack. Mosquitto was used because it is lightweight and implements the publish and
subscribe model which is, in the instance of this project, the most logical model to use
because this allows data to be published directly from one device to another device but also
multiple devices can publish to one device. This functionality has been utilised in this project
by Raspberry Pi two and Three both publishing to the cloud under one topic so all the data is
collated together.

As a result of how the publish and subscribe model publishes topics to the broker and
subscribes to the topics from the broker, there is no direct connection between the
publisher(s) and the subscriber(s), this means that systems that implement this kind of
architecture are usually very easily scalable because it can be as simple as adding extra
docker containers and publishing or subscribing to the relevant topic within them. For
example, in the implementation of this project it would be very easy to add another docker
container which publishes to the cloud because all the data in the cloud is received via
subscribing to one topic called “subscribeawscloud”. This scalability is important because if
future work is to be conducted using this project and the data needs to be load balanced
across more nodes, then this should be easy with the current implementation used.

Shell scripts were also used in the development of this application in order to make the
process of running the docker commands to stop cadvisor and prometheus containers,
remove them and then recreate them again much faster than typing all of the commands
manually. The cadvisor containers were stopped, removed and rebuilt instead of simply
being restarted because this is best practice and also ensured all the comparisons were fair
as then in each experiment, every cadvisor container was being run under exactly the same
conditions.

The Python 3.8 image was used to run the code inside docker containers because dynamic
typing (a key difference between Python and a lot of other programming languages) makes
the development faster (but this can potentially mean there is a higher chance of errors due
to the wrong type casting in larger applications). Another benefit of using Python is that it is
installed on Ubuntu and the Raspberry Pi operating system by default so if the code is not
being run in the container during the development of the application or while testing, this
means there is no additional installation required to get the application to run.

The Raspberry Pis used as the edge devices in this project are the Raspberry Pi Three
Model B+ w are used as the edge devices in this project because they are resource
constrained, and therefore representative of most edge devices found in real world
applications. In this system Amazon Web Services (AWS) is being used to host the cloud
instance. AWS was used to host the cloud element of the project because it is reliable and a
leading cloud provider.

A MYSQL database was used to store all the data received in the cloud. The MySQL
database was run inside a docker container. A Python library called MySQL connector was
used to connect to the MySQL database from within the Python code (and hence be able to
execute MySQL queries). The MySQL database was able to connect to the code receiving
the data from the Raspberry Pis because both images have been built in the same
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docker-compose file, hence by default they run on the same docker network unless
otherwise specified. There were issues encountered initially with connecting to the MySQL
database from within the Python file. This was solved by adapting the code for a
docker-compose file from a tutorial (Mothish, 2021).

In this project a few python libraries and modules were used. The libraries that were used
are listed below, along with a justification to why and how they were used:

● Requests - This library is used to read data from API endpoints.
● Csv - This reader object from this module was imported so that this could be used to

easily read each line of the csv file on the virtual machine one line at a time (by using
a for loop), to then publish to the file_subscribe topic.

● Time - This module was used when testing the application so a sleep of one second
could be used after each line of data was sent to the load balancer. This was done so
it was easy to see if the load balancing algorithms and publish and subscribe
mechanisms were working correctly.

● The Paho-mqtt client library made it possible to utilise the Mosquitto MQTT broker
with Python code.

Docker containers were used to run the code on both the Raspberry Pis and the cloud
because an osmotic computing pipeline uses microservices so by using docker containers
this helps the application resemble this to help achieve objective one. The benefits of
running applications inside containers is that all the code runs in an isolated environment so
as long as the code runs correctly inside the container on the original machine, it is then very
easy to then run this code on any other machine because the code running inside the
container is not dependant on the dependencies installed on the machine, so therefore there
cannot be any issues with incompatible dependency versions etc. This is something that is
quite important to the architecture of my project, because the fact that all the code runs
inside containers, means it will be very easy to add extra devices to the already existing
architecture without any or minimal configuration problems. Having the ability to add
cpu-constraints means it is very easy to make some edge devices perform less powerful for
testing and evaluating purposes (especially for testing the weighted round robin algorithm).
Docker containers were used over alternatives such as Podman, OpenVZ because docker is
the de-facto standard, and the service for which there is the most online support for.
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3.3 Issues encountered during the initial configuration of the development
environment and how they were overcome

During the initial configuration of the environment of the project there were several issues,
which meant this took significantly longer than expected. The details of the issues
encountered and how they were solved or mitigated are explained below.

The project architecture involves installing Ubuntu onto a virtual machine in VirtualBox.
Virtualbox is a hypervisor which can be used to run a virtual machine on a computer. Initially
there were issues with the virtual machine freezing when installing the operating system for
the first time, however once everything was installed and the virtual machine was running,
the virtual machine was responsive and there were no issues with it freezing. There were
also often issues with loading the virtual machine, after the Ubuntu image had been
successfully installed on the machine. To mitigate the potential time constraints regularly
dealing with this issue could impose on the project, the computer and virtual machine were
always left running and not turned off during the development phase of the project.

There were further issues with the virtual machine as in an ideal configuration the developer
should be able to either copy and paste files into the virtual machine from the host machine
or be able to use a shared folder with the host machine. This would enable the developer to
write the code locally on the host machine and then use the virtual machine only for running
the code. Three methods to transfer the code from the local machine to the virtual machine
were attempted:

● allowing bidirectional copy and pasting and drag and drop between the virtual
machine and local machine

● using a usb flash drive
● creating a shared folder between the local machine and the virtual one.

With all the above methods, varying issues were encountered, the most common one being
that in order to implement any of the above in Virtual Box, guest additions had to be
installed. After installing the guest additions, the virtual machine would break and the virtual
machine would need to be deleted and Ubuntu would have to be installed again on a new
virtual machine. Trying to fix this issue was taking far too much development time so the
decision was made that it is better to just simply do the development inside the virtual
machine as the overhead of doing the development in a potentially laggy virtual machine, did
not outweigh the extra time required to get a method of being able to share files between the
two operating systems working.
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3,4 The Development Journey

After the communication between the virtual machine and the load balancer was
established, the next step was to implement communication from the load balancer to
Raspberry Pi 2 and 3, and implement the round robin load balancing algorithm on the load
balancer to send the data to the other two Raspberry Pis. The data was sent under different
topics depending on which Raspberry Pi was the intended recipient, so each Raspberry Pi
only needed to subscribe to its respective topic. In the load balancer code, there is a function
called on_message_load_balance which decodes the message payload and then sends the
decoded message to the round_robin function. This was done so a function for each
different load balancing algorithm can be created, and then when running experiments, the
load balancing function that is called is simply altered in the
on_message_load_balance_function.

After the round robin load balancing algorithm was working over the MQTT protocol between
the load balancer and Pi 2 and Pi 3, the decision was made to containerize all the code
running on all of the Pis. When installing Docker onto the Raspberry Pis an error was
encountered as shown below.

Figure 2: Error encountered with Docker

The cause of this issue was the installation process that was used to install docker as snap
install used to install Docker on the first Raspberry Pi but this caused the error shown above.
On Raspberry Pi 2 docker was installed using a script but the same error occurred. It was
discovered that when installing docker using the “sudo apt install docker.io” command on
Raspberry Pi 3, that the hello world test image could be run and then when the existing
versions of docker were uninstalled from the other two Raspberry Pis and then reinstalled
the “sudo apt install docker.io”, the test image could also be successful run on these
machines as well. Getting the hello world image on docker working after installation was
important because then if errors are encountered later down the line when trying to run
docker containers, we can be confident that the error is with the code and not with the
installation.

Once docker was correctly installed on all three Raspberry Pi’s the code could be easily
containerised by adding a small docker file in the same directory as each of the Python files
and then building and running the docker containers.

After this the weighted round robin algorithm function was implemented. This function
distributes the payloads via a weighted round robin algorithm, where the weight of each

17



Raspberry Pi was specified in a dictionary as a parameter passed to the function, with the
name of the topic being the key, and its respective weight being the value. The round robin
and weighted round robin algorithms are shown below.

Figure 3: Python code used to implement round robin and weighted round robin algorithms.

The next stage in the development process was to integrate the cloud into the current
system. Using a PEM file and the relevant IP address an Amazon Web Services EC2
instance could be accessed through Putty to give access to the command line interface of
the EC2 instance. Connecting Putty to the EC2 instance was done by following a tutorial
(How to Connect to your EC2 Instance using PuTTY V1.1, no date). The EC2 instance was
a Ubuntu machine.

Raspberry Pi 2 and Raspberry Pi 3 could be easily connected to the AWS EC2 instance by
reusing the already existing code that implements the publish and subscribe model but by
changing the IP address to that of the EC2 instance.
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3.5 Implementing container metrics monitoring

The next stage in the development journey of the project was to implement a method of
being able to analyse the docker containers and metrics such as their CPU usage. To do
this, three pieces of software were used:

● cAdvisor - “provides container users an understanding of the resource usage and
performance characteristics of their running containers”(cadvisor: Analyzes resource
usage and performance characteristics of running containers, no date)

● Prometheus - “Prometheus is one of many open-source projects managed by the
Cloud Native Computing Foundation (CNCF). It is monitoring software that integrates
with a wide range of systems natively or through the use of plugins.”(What is
Prometheus and Why Should You Use It?, 2020)

● Grafana - “Grafana is an open source solution for running data analytics, pulling up
metrics that make sense of the massive amount of data & to monitor our apps with
the help of cool customizable dashboards.”(Knoldus Inc., 2022)

One of the problems encountered with configuring this system was that the default google
image for Cadvisor is not designed to run on ARM64 architecture, which is the architecture
that the Raspberry Pi 3 Model B+ runs on which was used in this project. To resolve this
issue, an unofficial version of the image which has been adapted for ARM64 was used
instead (ZCube, no date).This docker image was then run on all three Raspberry Pi’s by
executing the command found in the readme on the google cadvisor github page (cadvisor:
Analyzes resource usage and performance characteristics of running containers, no date). A
docker-compose.yml file was created to run on the virtual machine. The Docker compose file
included images for Prometheus and Grafana. In the same directory there is also a
prometheus.yml file. Inside the Prometheus.yml file the three targets are specified (the three
cAdvisor containers running on the Raspberry Pi’s). When the command docker-compose
up is run, this would then run the Prometheus and Grafana images.

When the ZCube cadvisor image was originally run, cAdvisor would run on the port 8080
and the interface was accessible through the web browser on the Raspberry Pi’s, however
none of the running docker containers could be seen. To try and figure out what was causing
this issue, the cadvisor image was run on Ubuntu on the virtual machine, to see if the same
issue occurred there, but all the containers were visible when the image was run on Ubuntu.
This indicated that the problem must be with the configuration of the operating system on the
Raspberry Pis. After some research the cause of the issue was identified. The text
“systemd.unified_cgroup_hierarchy=0 cgroup_enable=memory cgroup_memory=1”(Which
cgroup flags to add to cmdline.txt on 64bit Bullseye for Docker/Kubernetes - Raspberry Pi
Forums, no date) needed to be added to the /boot/cmdline.txt file in all of the Raspberry Pis
and they all needed to be rebooted. This was an issue with the version of the Raspberry Pi
operating system that was being used. After doing the reboot and then running cAdvisor
again, all of the live container metrics could now be seen.

To see this data in Grafana, the set up was relatively simple. First the user must login (using
the credentials which are specified in the docker-compose file), and then add prometheus as
a source (by specifying that the port was on localhost:9090). A dashboard, found on the
grafana website for docker containers (Docker Container, no date) was used and modified
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so that the graphs are not stacked to enable better readability and to allow fairer
comparisons. Although at this point the Grafana was working and the docker container
metrics could be monitored, none of the data was being persisted so if the Grafana container
was shut down. When the user logs back in again, Prometheus would have to be re-added
as a source and there would be no saved dashboards, which would be time consuming and
impractical to configure every time the Grafana image was run. To solve this volumes
needed to be added to the docker compose file for the Grafana image as shown below. This
was implemented by adapting the information for the Grafana docs by adapting the
information provided on the Grafana docs (Configure Grafana Docker image, no date) for a
docker compose file.

VirtualBox offers port forwarding, so this was used to map the ports for Prometheus and
Grafana, on the virtual machine onto the same ports on the host machine (9090 and 3000
respectively). This was useful because the web browser on the virtual machine was
sometimes slow to load in comparison to that on the host machine and made screenshotting
the Grafana graphs for the experiments much easier as the virtual machine had a reduced
screen size.
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The SQL Database and Calculating Time Metrics

At various points in a messages journey from the virtual machine to the cloud, datetimes
were added to the message so these can be used to calculate metrics to compare for
different experiments. A datetime was added to the message, when it was sent from the VM,
when it was sent from the load balancer, and when it was sent from the cloud. These
datetimes have been used to calculate the network latency between the Raspberry Pi 2 or
Raspberry Pi 3 and the cloud, the time taken from when the data is sent from the VM and
when it is received in the cloud and also the time taken from when it is sent from the load
balancer and then received in the cloud. An example calculation for the network latency from
a Pi 2 or Pi 3 to the cloud is shown below:

Network Latency = Time Received in the cloud - Time sent from Pi

Saving the data inside a MYSQL database was beneficial (instead of, for example, just
writing the data to a CSV file) because this allowed multiple different experiments to be run
and each set of results to be stored in a separate table. The tables could easily be queried to
retrieve the desired data. For example, the data was stored inside a database called
air_pollution_data. To access the average metric for the time from load balancer to cloud for
an experiment, all that needed to be run was the following commands:

● USE air_pollution_data;
● SELECT AVG(load_balancer_to_cloud) FROM example_experiment_data;

This made getting the averages needed to compare the results significantly faster and less
error prone than manual methods.
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4 Results and Evaluation

4.1 Why are these load balancing algorithms being compared?

The round robin, weighted round robin and least connections load balancing algorithms are
being compared because this allows both static (round robin and weighted round robin) and
dynamic load balancing algorithms (least connections) to be compared. By imposing CPU
constraints on some of the docker containers, weights can be assigned with the weighted
round robin algorithm in proportion to the CPU constraints to allow for a fair comparison
between least connections and weighted round robin in an environment where not all nodes
have the same processing power. This is something that can be common in Internet of
Things programming models. A well known disadvantage of the round robin load balancing
algorithm is its inability to efficiently accommodate for systems with different nodes of
different processing power. Nonetheless, in systems where the processing power of the
nodes is equal, the round robin algorithm has been known to perform well and this is why the
first three experiments (which compare all three algorithms) do not have any docker
constraints implemented.

4. 2 Rationale behind hypothesis

I have hypothesised that the least connections algorithm will be the most efficient load
balancing algorithm when compared with round robin and weighted round robin, because
with this algorithm the data packets will only be sent to the server with the least amount of
active connections (data still being processed), therefore each data packet should
theoretically only ever be sent to the server which is currently processing the least amount of
packets. A limitation of the least connections load balancing algorithm is that a higher
amount of processing is required because acknowledgements need to be sent from the
Raspberry Pi 2 or Raspberry Pi 3 to the load balancer when each message has been
processed, so that the load balancer can keep a record of how many active connections are
one each Raspberry Pi.

4.3 Limitations of the least connections load balancing algorithm

Despite the fact that the round robin algorithm is the most simple load balancing algorithm
that exists, in configurations where all of the servers have a similar processing power, it can
be very effective and is by far the easiest to implement and it cpu power does not need to be
wasted by receiving and sending acknowledgments that the data has been processed unlike
with the implementation of the least connections load balancing algorithm. Another minor
issue with the implementation of the least connections algorithm in this project is that
sometimes a data packet will be sent to a server that does not truly have the least
connections. For example, if server A has 150 active connections and server B has 149
active connections but has just completed processing two of the data packets resulting in
their now only being 148 active connections on server A, if a packet was to come to the load
balancer at this exact time then the data would be sent to server B despite this server
actually having more active connections. This is because there is a small network latency
delay between the acknowledgement being sent to the load balancer receiving this. Although
this does mean the algorithm may not always perform 100 % optimally I believe this will
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make negligible difference on the throughput which the system can process effectively as in
this scenario both the servers are processing a very similar number of packets anyway.
When the data is sent with a QoS 0 to the MQTT broker there will also be a small risk of the
acknowledgement not being received could also have the potential to make the current
connections counter in the load balancer inaccurate.

4.4 Why CPU Constraints are used in the expeirments

For the project Raspberry Pi 3s model 3 B+ Rev 1.3 have been used. These models of the
Raspberry Pi use a quad core processor. As stated in the docker documentation (Docker
Documentation, 2022) the command “--cpus” can be used to specify how many CPU cores
to use (or even less than a whole core). This can be used in conjunction with the weighted
round robin algorithm to be able to evaluate the algorithm's effectiveness. It is necessary to
use CPU constraints for analysing the weighted round robin algorithm because it is designed
to distribute different amount of packets to different nodes depending on their processing
capabilities and because in this project all of the Raspberry Pis have the same specification
and the same hardware, this allows the docker container to be constrained so that it can
emulate a node with less processing power and slower hardware.

4. 5 Analysing the SQL Database Metrics

In these experiments, data metrics about the different experiments have been stored in the
MySQL database. This evaluation uses the average of these three metrics from the MySQL
database:

● Metric 1 - “Pi to cloud”
● Metric 2 - “Load balancer to cloud
● Metric 3 - “VM to cloud”

In the results shown in table 1, and table 2 weights refers to the weight assigned to each
Raspberry Pi in the weighted round robin algorithm and CPU constraints refers to the CPU
constraints which were applied to the docker containers performing the processing on each
Raspberry Pi. The CPU constraints refers to the maximum number of CPU cores the docker
container is allowed to use (the maximum is 4). For both CPU constraints and weights, they
are listed in the same respective order (Raspberry Pi 2: Raspberry Pi 3). The experiments
are listed below:

1. Round Robin - CPU constraints: none
2. Least Connections - CPU constraints: none
3. Weighted Round Robin - weights: 1:1 - CPU constraints: none
4. Weighted Round Robin - weights: 1:4 - CPU constraints 1:4
5. Weighted Round Robin - 1:16 CPU 0.25:4 CPU constraints: 0.25:4
6. Round Robin - CPU constraints: 1:4
7. Round Robin - CPU constraints: 0.25:4
8. Least Connections - CPU constraints: 1:4
9. Least Connections - CPU constraints: 0.25:4
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Experiment Number Pi to cloud (ms) Load balancer to
cloud (ms)

VM to cloud (ms)

Experiment 1 260 31000 31000

Experiment 2 254 37200 37200

Experiment 3 256 31000 31000

Experiment 4 258 38300 38300

Experiment 5 257 28600 28600

Experiment 6 254 39100 39100

Experiment 7 261 35100 35100

Experiment 8 251 44600 44500

Experiment 9 250 35000 35000

Table 1: The average results of the top 1000 rows for the experiments rounded to 3 s.f

Experiment Number Pi to cloud (ms) Load balancer to
cloud (ms)

VM to cloud (ms)

Experiment 1 260 31000 31000

Experiment 2 254 37400 37400

Experiment 3 257 34300 34300

Experiment 4 257 40600 40600

Experiment 5 258 30700 30700

Experiment 6 254 35900 35900

Experiment 7 262 46400 46400

Experiment 8 251 46900 47000

Experiment 9 252 41800 41900

Table 2: The average results of the top all rows for the experiments rounded to 3 s.f

All of the above data has been rounded to 3 significant figures to allow a clearer comparison
between the data (the unrounded values can be found in the appendices). Both the Grafana
graphs and “pi_to_cloud” (network latency), “load_balancer_to_cloud” and “vm_to_cloud”
metrics stored in the sql database, give useful insights. Unless stated otherwise the time
metrics data that will be compared in this dissertation are that of the top 1000 rows shown in
table 1. It can be argued that the SQL data is more valuable than the Grafana data as it
allows a direct comparison of times taken. The network latency is a very useful piece of data
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as knowing this variable we can check that all the data values are relatively close, and so an
external factor (such as there being a lot of outgoing data from another PC on the network)
has not drastically affected the network latency and therefore caused anomalies in the
results.

All of the “pi_to_cloud” metrics for the top 1000 rows are between 250ms and 261ms,
therefore there is negligible difference between them. If there was a higher variance, the
network latency metric (“pi_to_cloud”) could be subtracted from the “VM_to_cloud” metric to
ensure there is a fairer comparison between the different experiments. Two tables of data
have been extracted from the MySQL database; the averages of all of the data and the
average of the top 1000 results. During some experiments, socket timeout errors were
experienced due to the high volumes of back-pressure which has resulted in some
experiments having less rows in their SQL table than others . All of the experiments have at
least 1000 entries so the average of the top 1000 rows for all three columns in every
experiment has been recorded to allow a fairer comparison. Averages of all of the data have
also been recorded.

Assumptions that were taken when conducting these experiments:
● All 3 Raspberry Pi’s have the same processing power and there is no hardware faults

that affect performance (all of the Raspberry Pi’s are the same model)
● The rate at which data is sent from the virtual machine to the load balancer is

approximately consistent throughout all experiments

Experiments 1, 2, and 3 (no CPU constraints)

Experiment 3 was undertaken as a control to compare with experiment one as, theoretically
the results should be the same because when a weight of one is applied to both edge
devices, this is essentially the same algorithm as round robin. The experiments produced the
expected results and metrics 2 and 3 are both 31000ms for both experiments. Experiment 2
performed slower than 1 and 3 as it took 37200ms for metric 2 and 3 which is 62000ms
more than experiments 1 and 3. This could be explained by the extra decisions that have to
be made in the implementation of the least connections load balancing algorithm (for each
packet of data sent to this algorithm between one and three conditional statements will have
to be checked whereas with round robin there is only one if and one else statement).
Furthermore, in the least connections algorithm, the load balancer has to subscribe to both
the data coming from the virtual machine and also the acknowledgements for when a
connection has closed. The extra processing required in this algorithm will potentially impact
the speed at which the messages are allocated and sent to the respective Raspberry Pis,
when compared to the other two algorithms.

Experiments 4, 6 and 8 (1: 4 CPU constraints)

As is to be expected, metrics 2 and 3 are faster in experiment 4 than they are in experiment
6. Metrics 2 and 3 are both 38300ms in experiment 4 and are both 39100ms for metrics 2
and 3 in experiment 6. This means there is a difference of 800ms. Surprisingly the metrics
for experiment 8 were the slowest, with 44500ms for metrics 2 and 3, which is 5400ms
slower than experiment 6 and 6200ms slower than experiment 8.
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Experiments 5, 7 and 9 (0.25:4 CPU constraints)

Once again weighted round robin performed faster than round robin here, with metrics 2 and
3 being 6500ms faster on experiment 5 than experiment 7. Experiment 9 did perform better
than experiment 7 by 100ms for both metrics 2 and 3. This is only a very marginal difference,
and weighted round robin has outperformed least connections by 6400ms for metrics 2 and
3.

Experiments 1, 6, 7

Experiments 1, 5 and 7 are all round robin experiments. Experiment 1 performs the fastest
which is to be expected because there are no CPU constraints, however, experiment 7
performs 4000ms faster than experiment 6. As the docker container on Raspberry Pi 2 has a
quarter of the processing in experiment 7 than it does in experiment 6 and all the data
packets are being evenly distributed by round robin, it must be concluded that this result is
an anomaly. When the results of all of the data are compared (table 2), experiment 6 does in
fact perform 10,500ms slower (46400-35900), which supports the notion that this result is an
anomaly.

Experiments 2, 8, 9

Experiments 2, 8 and 9 are experiments that implement the least connections algorithm.
Surprisingly, experiment 9 performed the best, followed by experiment 2 and then
experiment 8 being the slowest when looking at the data in table 1. On the contrary to this,
experiment 2 performs the fastest, followed by experiment 9 and then experiment 8 when we
look at the averages for all of the data shown in table 2. I think the difference in results
between these two datasets is due to the container on Raspberry Pi 2 crashing 3 minutes
before the container on Raspberry Pi three stopped. This can be seen in the grafana graph
for experiment 8 found in the appendix.
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4.6 Analysing the Grafana Metrics

Figure 4: Grafana container metrics for experiment 2

The above image demonstrates the docker container metrics from running the application by
using least connections as the load balancing algorithm which is running on the mqtt-rp1
container which then distributes the data to Raspberry Pi two and three. The data sent to
Raspberry Pi two and three is processed in mqtt-rp2 and mqtt-rp3 respectively and from
here sent to the cloud. We can see in this diagram that all three of the mqtt containers have
negligible CPU usage until I send the data from the virtual machine to mqtt-rp1 at 13:56. We
can see that mqtt-rp1 uses the most CPU power, and mqtt-rp2 and mqtt-rp3 both have a
similar amount of CPU usage. The application eventually crashes due to a “socket timeout
error”. The socket timeout error is due to their being too much data for the load balancer to
handle.
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Figure 5: Grafana results for experiment 8 with the trend in peaks and troughs identified

As we can see throughout all of the experiments the CPU usage for the cadvisor containers
on the Grafana remains relatively consistent at approximately 12.5% throughout all of the
experiments hence this allows us to assume that the CPU usage of the cadvisor containers
did not affect the validity of the results. If there was a high variance in the CPU usage of the
cAdvisor containers this could affect the amount of CPU power each experiment had access
to. We can also see there is a correlation between the sent traffic per container, received
traffic per container, and CPU Usage per container. This is demonstrated by the shapes of
the graph in experiment 8. As we can see, the peaks and troughs occur at the same point in
time and the graphs all follow the same general pattern. This shows us that an increase in
received network traffic for a container, causes an increase in CPU usage in the load
balancing container, due to more packets needing to be allocated to Pi 2 and Pi 3. This
increase in CPU usage means more data is able packets are able to be sent out from the
load balancer, hence the increase in Sent Network Traffic per container, also following the
same trend. This trend shows us that there is a direct positive link between the amount of
messages a container receives and the CPU usage to process this data, hence
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demonstrating that by restricting CPU usage of certain docker containers this should impact
their ability to process as many messages at the same speed.

We can see that in most experiments the CPU usage of mqtt-rp2 and mqtt-rp3 are around
the 5% level, however in experiment 5 mqtt-rp2 only reaches just under 2% (this container
was constrained to have 1/16th of the CPU power when compared to mqtt-rp3). This
indicates that the CPU constraints implemented on the docker containers are working.

4.7 Evaluating results against the hypothesis

In light of the results the hypothesis has not been proven that “the least connections
algorithm will be the most efficient load balancing algorithm when compared with round robin
and weighted round robin.” In experiments 1, 2, and 3, experiments 1 and 3 are joint leaders
in performance (round robin and weighted round robin). In experiments 4, 6 and 8, as well as
experiments 5, 7, and 9, the weighted round robin algorithm is the clear leader here by
performance here as well.

Although this data does not prove the hypothesis there are definitely a lot of benefits of the
least connections algorithm, when compared with weighted round robin. One benefit of least
connections is that this algorithm can be deployed into most systems with very little
configuration. On the contrary, with weighted round robin, for it to perform optimally, there
has to be an understanding of how powerful all of the edge devices are (assuming they are
not equal), and this may be time consuming to implement into a system which has multiple
edge devices connected to a load balancer. Furthermore, as the least connections algorithm
is dynamic, this means it is more adaptable to inconsistent packet sizes. In the system that
was implemented in this project, all of the packets sent over MQTT have been of a similar
size and the processing required was relatively consistent, however in a system with varying
packet sizes, and where the amount of processing will vary depending on the size of the
packet (for instance, if a larger packets contained more values and the average of all the
values needed to be calculated), least connections would perform much better in this
scenario. This is because if one node becomes overloaded with too much data due to
receiving a disproportionate amount of larger packets, then the next few packets would be
dynamically allocated to other servers until the number of active connections on the
overloaded server has reduced (or all other active connections have increased).

However, the findings do demonstrate, that if the weights of the different nodes in a system
are known, and the packet sizes received and distributed by the load balancer are of a
consistent size, then weighted round robin is the most efficient option (as there is no need to
keep an active communication with all of the nodes that the load balancer is sending data to,
and a lot less processing required when determining which node to send the packet to). In a
system, when all the nodes have equal processing power, the round robin algorithm is the
most efficient as shown by experiment 1, 2 and 3 (or weighted round robin, with each node
being assigned a weight of one).
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5 Conclusion

5.1 Meeting the objectives

Objective one is “to use the Urban Observatory API (IoT), with the Raspberry Pi acting as an
edge device and AWS for the cloud to emulate the data flow of an osmotic computing
pipeline”. Objective one has predominantly been a success in this project because a system
has been created which emulates the data flow that could happen in a real world osmotic
computing system. Evidence of this system was shown in the technical demonstration, and
is shown through the code submitted. The data sent from the virtual machine, emulates data
that could be sent directly from an IoT sensor or multiple IoT devices (the data read from the
Urban Observatory API in the emulation in fact originates from an IoT sensor). The
Raspberry Pis emulate the edge layer of an osmotic computing pipeline, as they perform
processing on the data and then send the data to the cloud similar to that of a real world
application. The data is then also stored in the cloud, therefore most of the requirements of
an osmotic computing pipeline have been met because the fundamental system which
allows the data to be able to from the IoT device to the edge to the cloud has been
implemented. If this project was to be taken further, one could add the functionality so that
the application can take a snapshot of container processing data in an edge device and then
continue to process this in the cloud or vice versa. I have made this suggestion because the
interchangeability of where the data is processed and the ability to migrate data across to a
microservice in the cloud from a microservice on the edge or vice versa is key to the concept
of osmotic computing. Although the “osmotic” functionality has not been implemented into
the system, I do not believe this has affected the ability to investigate the aim or objectives
two or three, because fundamentally the methods which have been investigated to mitigate
the impact of backpressure, can be applied any Internet of Things Programming model that
contains resource constrained edge devices including osmotic computing.

Objective 2 is “to investigate and evaluate the different algorithms that can be used for load
balancing”. Objective 2 has been met because the effectiveness of the three load balancing
algorithms have been investigated and evaluated by using the experimental results talked
about in results and evaluation. Objective three is “to implement an efficient load balancing
algorithm into the edge layer of an osmotic computing pipeline.” This objective has also been
met because three load balancing algorithms have been implemented in the system. The
hypothesis that the least connections algorithm would be the most efficient load balancing
algorithm, was not proven but weighted round robin was the most efficient algorithm in all of
the experiment comparisons involving the three different algorithms. As a result of this we
can conclude that weighted round robin is the most efficient algorithm for the configurations
that were tested. As this algorithm was implemented into the edge layer of an application
that mostly emulates an osmotic computing pipeline, it is reasonable to conclude that
objective 3 has been met.

Objectives 4 and 5 from original proposal were omitted because the load balancing algorithm
used can often be the bottleneck in the system which causes more back-pressure to build up
and causes the system to break more easily than if a more efficient load balancing algorithm
had been used. Using methods of adaptive data flow control methods (such as the token
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bucket algorithm, or limiting the data forwarding rate, or data receiving rate) only mitigate the
effect that a low efficiency load balancing algorithm has. For example by limiting the
receiving rate in the load balancer, this may ensure that Raspberry Pi 2 and Raspberry Pi 3
do not crash, however fundamentally if the load balancing algorithm used is more efficient,
this may not be necessary and if the receiving rate is limited this will mean that packets
could be lost if the data is being transmitted with a QoS of 0 or if it is being transmitted with a
QoS of 1, then the data will be received with a delay.

5.2 Justification for omission of objectives 4 and 5

Omitting objectives 4 and 5 helped to achieve objectives 2 and 3 because this meant that
more time could be spent running different experiments and gave the project a narrower
scope so that more emphasis could be placed on comparing the 3 load balancing
algorithms.

The overall aim of the project is “to evaluate the effectiveness of different methods to deal
with backpressure in an osmotic computing pipeline.” I believe this has been met as a result
of meeting objectives 1, 2, and 3.

As mentioned in the results and evaluation, the experiments provide useful insights into the
proposed hypothesis, but they do not prove that the hypothesis is correct. In spite of this, a
lot has been achieved from this project and the implementation used in this project could be
used to provide a strong foundation for future work.

5.3 Suggestions for Future Work

Here are some suggestions for further work, for those who want to take this project further:
● Implement data flow control methods such as the token bucket algorithm, leaky

bucket algorithm, or limiting the forwarding rate of the load balancer rate in
conjunction with the load balancing algorithms used in this project and compare the
metrics to those of the experiments already run.

● Run the experiments several times and take an average of these values so the
results are more reliable and anomalies can be better identified.

● Use a larger data set (or loop through the same data multiple times), to ensure part
of the application always eventually crashes (usually via a socket timeout). This time
taken until the application breaks could also be recorded and used to evaluate the
effectiveness of the different algorithms at dealing with back-pressure (assuming the
data is consistently sent from the virtual machine at the same rate).

● Perform the experiments using other known existing load balancing algorithms to
evaluate their effectiveness.

● Create a new load balancing algorithm to compare with the already existing
algorithms such as those used in this project.
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Appendix

Grafana Graph Experiments Results

Experiment 1
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Experiment 2
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Experiment 3
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Experiment 4
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Experiment 5
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Experiment 6
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Experiment 7
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Experiment 8

41



Experiment 9

42



SQL Database Results

Experiments:
1. Round Robin - CPU constraints: none
2. Least Connections - CPU constraints: none
3. Weighted Round Robin - weights: 1:1 - CPU constraints: none
4. Weighted Round Robin - weights: 1:4 - CPU constraints 1:4
5. Weighted Round Robin - 1:16 CPU 0.25:4 CPU constraints: 0.25:4
6. Round Robin - CPU constraints: 1:4
7. Round Robin - CPU constraints: 0.25:4
8. Least Connections - CPU constraints: 1:4
9. Least Connections - CPU constraints: 0.25:4

Averages of all Data - unrounded

Experiment Number Pi to cloud (ms) Load balancer to
cloud (ms)

VM to cloud (ms)

Experiment 1 260.3655663522527 30958.31457103934 30978.43237920499
5

Experiment 2 253.7338273941524
6

37428.81241551656
4

37446.14644892253

Experiment 3 256.5000231811319
5

34327.78953824815 34340.34880420003

Experiment 4
257.2631729832678
5

40576.89944302732 40592.89080754807

Experiment 5 258.2935497154856
5

30653.64272101274 30672.89371191125

Experiment 6 254.1534562446701
7

35866.76669096610
6

35884.01329854508
4

Experiment 7 262.4518091473545 46410.67729377371 46426.05521884249

Experiment 8 251.2988672751884
8

46946.53382454909 46965.01401142021
5

Experiment 9 251.8472993048652
6

41846.82542295985 41863.53593965891
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Averages of Data - top 1,000 results - unrounded

Experiment Number Pi to cloud (ms) Load balancer to
cloud (ms)

VM to cloud (ms)

Experiment 1 260.3701377410888
5

31011.60660494995 31031.77208285522
3

Experiment 2 253.719279006958 37229.49766679382
4

37246.83436856079

Experiment 3 256.4359038543701 30955.81767687988
4

30967.97373205566
3

Experiment 4 257.6364790039062
3

38297.03242068481
6

38313.64253173828

Experiment 5 257.2258193206787
4

28563.60289759826
6

28582.77287368774
3

Experiment 6 254.2340662689209 39088.31241235351
6

39105.89640817261

Experiment 7 260.8330633087158 35085.58697161865 35102.13513699340
5

Experiment 8 250.6270688476562
6

44513.04099786377 44529.12244323730
6

Experiment 9 249.7225714111328 34950.44953280639 34964.83408212280
5
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Averages of All Data - 3 s.f

Experiment Number Pi to cloud (ms) Load balancer to
cloud (ms)

VM to cloud (ms)

Experiment 1 260 31000 31000

Experiment 2 254 37400 37400

Experiment 3 257 34300 34300

Experiment 4 257 40600 40600

Experiment 5 258 30700 30700

Experiment 6 254 35900 35900

Experiment 7 262 46400 46400

Experiment 8 251 46900 47000

Experiment 9 252 41800 41900
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Averages of Data - top 1,000 rows - 3 s.f

Experiment Number Pi to cloud (ms) Load balancer to
cloud (ms)

VM to cloud (ms)

Experiment 1 260 31000 31000

Experiment 2 254 37200 37200

Experiment 3 256 31000 31000

Experiment 4 258 38300 38300

Experiment 5 257 28600 28600

Experiment 6 254 39100 39100

Experiment 7 261 35100 35100

Experiment 8 251 44500 44500

Experiment 9 250 35000 35000
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